
Blockchain Economics: Online Appendix*

Joseph Abadi� Markus Brunnermeier�

January 3, 2022

Abstract

In the Online Appendix, we discuss our model’s assumptions (in Appendix D), prove the exis-

tence result in the Blockchain Trilemma (in Appendix G), and prove results in Sections 5.2 and

6.2 (in Appendices H and I, respectively). Mostly, we use the formal framework provided in Ap-

pendix A of the paper. Given that we prove some results in extensions of our model, though, we

first slightly generalize our framework in Appendix E. Then, we present the consensus algorithms

that we use in our proofs in Appendix F. We then proceed with our proofs.

*Disclaimer: The views expressed in this paper are solely those of the authors and do not necessarily reflect the
views of the Federal Reserve Bank of Philadelphia or the Federal Reserve System. Any errors or omissions are the
responsibility of the authors.

�Federal Reserve Bank of Philadelphia
�Princeton University

Contents

D Discussion of model assumptions 2

D.1 Assumptions on payoffs and preferences . 2

D.2 Faulty agents and communication frictions . 3

D.3 Equilibrium concept . 4

E Preliminaries 5

F Consensus algorithms in the Trilemma 6

F.1 The shutdown fault algorithm . 6

F.2 The revision algorithm . 11

F.3 The Bracha and Toueg (1985) algorithm . 13

F.4 The Lamport, Shostak, and Pease (1982) algorithm 17

G Proof of the existence result 20

G.1 Fault-tolerance proof . 21

G.2 Resource-efficiency proof . 23

G.3 Full transferability proof . 25

H Proof of Proposition 1 26

H.1 Fault-tolerance proof . 26

H.2 Resource-efficiency proof . 27

H.3 Full transferability proof . 28

I Proofs of results in synchronous settings (Section 6.2) 29

I.1 Proof of Proposition 2 . 29

I.2 Proof of Proposition 3 . 31

1

D Discussion of model assumptions

In this section, we provide a more thorough discussion of our model’s assumptions, which has

been postponed up until this point. We discuss three key issues: the model’s payoff environment

and assumptions on preferences, our interpretation of faulty agents, and the need for the specific

equilibrium concept that we use.

D.1 Assumptions on payoffs and preferences

In understanding how our static model with quasilinear payoffs maps to record-keeping, it is

useful to think of agents’ ledger balances as payoffs in a continuation game (as in Abreu, Pearce,

and Stacchetti, 1990). When agents reach consensus on an outcome, they each have a piece of

information (an update to the ledger) informing them of how the continuation game is to be played.

That is, the process of reaching consensus can be thought of as a “pre-play” communication phase

in a dynamic game (e.g. Aumann and Hart, 2004). It may seem odd, then, that we restrict to

a quasilinear environment in which the Pareto frontier of payoffs in this continuation game is a

simplex,

V = {ṽ ∈ NN |
∑
n∈N

ṽn ≤
∑
n∈N

vn}.

Typically the Pareto frontier is not restricted to be of this form. We make the assumption of

quasilinear preferences only for notational simplicity, though. All of our results extend to a setting

in which agents’ preferences over ledger balances are instead described by increasing functions

gn(vn + tn), so that the Pareto frontier of ledger payoffs can take an arbitrary form.

In Section 2.4, we also impose additional assumptions on preferences. Assumption 2 should be

thought of as effectively restricting to environments in which agents engage in mutually beneficial

transactions. The first condition in that assumption implies that all possible transfers of value are

in fact part of an individually rational outcome under some conditions. This gives the designer

a reason to attempt to implement all possible transfers of value among agents. More generally,

the designer may not know precisely which class of mechanisms the record-keeping system will

implement. In order to render the record-keeping system as useful as possible, the designer must

ensure that any possible transfer of value can be achieved. The need for the second condition in

Assumption 2 can be understood through the double-spend lemma. It implies that there exists a

state of the world in which the deviating coalition has beneficial transactions that can be realized

with two distinct subsets of agents. Otherwise, it could be that a double-spend is never beneficial

for any agent, neutralizing the need to provide incentives for honesty.

We proceed with two examples in order to illustrate the content of this assumptions: one in

which Assumption 2 is satisfied, and one in which Assumption 2 (and, indeed, the Blockchain

Trilemma) fails.

Example 1: A production economy. Suppose that each agent n produces a differentiated good

at a unit cost. A transaction y is a sale of j units of a good from a seller n to a buyer n′ and a

2

transfer of balances t(y) = j from the buyer to the seller. Each agent n has a demand for Jn,n′

units of the good produced by agent n′, where Jn,n′ is an arbitrary integer. When an agent’s

demand for good n′ is Jn,n′ , that agent receives marginal utility u > 1 for the first Jn,n′ units

consumed and zero for each additional unit in excess of Jn,n′ . Hence, agent n’s preferences can be

described by a type θn = {Jn,n′}n′∈N , and the state of the world is θ = {θn}n∈N . Sellers produce

differentiated goods (indexed by the seller’s identity n) at a unit cost. It is easy to check that

Assumption 2 is satisfied: for each possible transfer t, there is an outcome in which that transfer

is realized: the quantity jn,n′ of good n′ bought by agent n simply needs to be set equal to the

required transfer from n to n′. Furthermore, for each possible set of transactions, there is a state in

which precisely those transactions are individually rational. Therefore, the Blockchain Trilemma

holds in this environment.

Example 2: The Byzantine Generals problem. Suppose that the agents form an army that

wishes to successfully attack an enemy encampment, which lies somewhere in a set Y of possible

locations. One of the agents is a general, and the others are lieutenants (θn = L). Only the general

knows the location of the enemy encampment, so the general’s type is θn = (G, y) for some y ∈ Y .

All agents can choose to either attack a particular location y ∈ Y or retreat. A “transaction” in

this environment is therefore a pair (S, yn), where y ∈ Y ∪ {r} denotes a location that the set of

agents S agreed to attack (or y = r if agents in S retreated). If at least J agents attack the location

of the enemy encampment, all the attackers receive utility u > 0. An agent who chooses to retreat

receives a utility of 0. An agent who attacks an incorrect location, or a correct location that fewer

than J − 1 others attacked, suffers a utility loss of ℓ > 0.

This environment is similar to that in the Byzantine Generals problem that originally appeared

in Lamport, Shostak, and Pease (1982), which was also analyzed in a game-theoretic context by

Rubinstein (1989). Transfers of ledger balances are not needed in this environment to achieve

efficient outcomes, so Assumption 2 fails. It is indeed possible to design a consensus algorithm

that achieves fault-tolerance, resource-efficiency, and full transferability. Intuitively, agents play a

coordination game, so they would never want to deceive one another. Therefore, there is no need

to provide incentives for agents to communicate honestly.

D.2 Faulty agents and communication frictions

The two key communication frictions in our model are (1) the possibility of delays in communi-

cation, and (2) the presence of faulty nodes. In reality, of course, all communication networks are

subject to lags in communication, so the first friction in Assumption 1 is relatively innocuous. Our

assumptions about faultiness are, in some cases, more substantial.

We state all of our benchmark results in a setting where faulty nodes do not communicate

(Assumption 1), so faulty nodes can be interpreted as computers that are offline or have suffered

a crash. However, we also extend the model to account for arbitrary behavior by faulty nodes

(Assumption 1’). A richer set of deviations from the communication protocol could represent

glitches or even a situation in which a malicious attacker has taken control of some of the network’s

3

computers. Both the assumptions of “shutdown” faults and arbitrary faults are typical in the

computer science literature.

In our setting, the interpretation of faults as crashes, glitches, or malicious attacks are all useful.

It is obvious that any sensible communication protocol should be required to be robust to crashes

or shutdowns. It is reasonable (and necessary) to assume that in large networks (e.g. the internet)

participants will occasionally shut down their devices. A communication protocol that is not robust

to shutdowns would almost certainly fail in any large-scale setting. Moreover, a node’s failure to

communicate could also reflect a situation in which a potential user of the network has not yet

joined, which must also be accommodated (unless the set of network participants is to remain fixed

after its inception).

The assumptions that glitches or malicious attacks may occur are stronger. A glitch can be

interpreted as a situation in which a node sends random messages, without any particular intent to

crash the network. Imposing this assumption also seems reasonable in a setting in which program-

ming errors may cause some computers in the network to act incorrectly. Intuitively, other network

participants who program their devices correctly should not be punished too severely (through a

breakdown in consensus) if some other participants make a programming mistake.

Accounting for the possibility of a malicious attack is the strongest robustness assumption that

can be made. In an economic model, it may be desirable to account for maliciousness as a way of

expressing the idea that some agents’ preferences over outcomes may not actually be known. An

agent could, for example, make a bet with others outside of the record-keeping system that the

digital ledger will cease to function. This would provide that agent with an incentive to collude with

others in order to destroy the network, and the fault-tolerance requirement in this case represents

the desire to have a record-keeping system that is robust to such side bets.

Importantly, our impossibility result rests only on the weak assumption that computers may

fail to communicate. By contrast, we are able to prove our existence results (in Propositions 1 and

2) under the much stronger assumption that attacks on the network may be malicious. Therefore,

in making these assumptions, we actually prove our results under the most stringent possible

conditions.

D.3 Equilibrium concept

While our equilibrium concept may seem extremely strong, it is necessary to understand the

difficulties in digital record-keeping. It is easy to design communication protocols that entirely

prevent coalitional deviations when faults do not have to be considered. This is proven by the

existence result of the Blockchain Trilemma: in the absence of a fault-tolerance requirement, it is

possible to achieve full transferability and resource-efficiency.

Additionally, we have argued that in a digital environment, it is crucial to consider the possibility

of faults, since it is impossible to guarantee that all computers in a network will operate correctly.

As described previously, our equilibrium concept also permits agents to entertain heterogeneous

beliefs about the identities of faulty agents. This requirement is also natural: in reality, it would be

4

unreasonable to require that agents have common information about who is offline and who is not.

It would be quite difficult for the designer to determine the set of possible beliefs held by agents,

so a robust approach (rather than a Bayesian equilibrium concept) is appropriate.

Likewise, if we drop the coalition-proofness requirement, it becomes easy to design fault-tolerant

communication protocols. For example, consider the following system: there are two trusted record-

keepers, n∗
1 and n∗

2. All non-faulty agents initially send a message to both record-keepers in order

to indicate they are non-faulty. Then, n∗
1 and n∗

2 communicate with each other to reach agreement

on an outcome. For example, they could agree on the outcome x = F (θ, S), where S represents the

set of agents who reported to both record-keepers. Finally, an agent decides on outcome x only if

n∗
1 and n∗

2 report the same outcome x.

In this type of record-keeping system, there is no unilateral deviation that will permit n∗
1 or n

∗
2 to

do anything other than prevent consensus from ever taking place. There is no way for either record-

keeper to double-spend, since a deviation by one record-keeper to attempt to generate consensus

on two different outcomes will be foiled by the other record-keeper, who will not go along with

the deviation. It is therefore trivially easy to design a consensus algorithm that entirely prevents

dishonesty if we drop the coalition-proofness requirement.

Given the efforts put into the design of elaborate consensus algorithms in reality, it would seem

that at least the designers of such systems bear in mind the possibility of coalitional deviations.

Bitcoin’s consensus algorithm, for example, is designed to dissuade “51% attacks” in which one

entity comes to be in control of a majority of the network’s computing power. Proof-of-stake

consensus algorithms, similarly, are designed to prevent deviations by two-thirds of “validators,”

who are the agents responsible for approving blocks added to the blockchain.

E Preliminaries

We begin by setting up some formal details and notation that we will use in the constructions

of consensus algorithms and the proofs. First, we describe the types of information that agents

might have. The state of the world is θ = (θ̃1, . . . , θ̃n), where θ̃n ∈ Θ̃n (where Θ̃n is finite) describes

agent n’s preferences. In our benchmark model, θ is public knowledge, whereas in our extensions,

we permit each agent n to have private information about θ̃n. The designer may also use verifiable

private randomization (in the form of signals ϕn in a finite set Φ of arbitrary size), so agent n’s

information is described by θn = (θ̃n, ϕn).
1 The state of the world is distributed according to a

full-support distribution GΘ ∈ ∆Θ =
∏

n∈N
Θ̃n, and the distribution GΦ ∈ ∆Φ of the private signals

is chosen by the designer. We let Θn = Θ̃n × Φ denote the possible initial information sets of

agent n. Given this definition of agents’ information θn, we can then apply all of the definitions in

Appendix A of the paper for nodes’ behaviors, equilibrium, consensus sets, and the desired features

1Feldman and Micali (1988) demonstrate how the designer could provide agents with a communication protocol
that permits them to replicate verifiable randomization, even if agents themselves do not have access to a source of
public randomization.

5

of a consensus algorithm.

We also define a notion of a social choice function.

Definition E.1. A social choice function F is a collection of maps FS :
∏
n∈S

Θn → XS for each

S ⊂ N .

We must specify a map from information to outcomes for each subset of agents S because faulty

agents might fail to share their information, so when a set of agents S are non-faulty, the outcome

on which they reach consensus should not depend on the information held by faulty agents N −S.

Given that we allow for public randomization whose inputs is incorporated in the outcome specified

by the social choice function, our notion of a social choice function is actually similar to the usual

notion of a social choice correspondence, since a single profile of preferences can map to multiple

different outcomes.

In what follows, it will occasionally be useful to define an auxiliary type θF for each agent n,

corresponding to a situation in which n is faulty. We then denote the set of possible states, when

this auxiliary type is added, by Θ̃ =
∏

n∈N
(Θn ∪ {θF }). A profile of types will be denoted θ ∈ Θ̃,

the restriction of a profile θ to agents in S will be denoted θS = {θn}n∈S , and it will be generally

understood that

F (θ) ≡ FS(θS) if θn = θF ∀ n ̸∈ S.

We denote the set of agents n such that θn ̸= θF by S(θ). The problem of reaching consensus is

simply the problem of reaching an agreement on some value θ ∈ Θ̃. Our consensus algorithms will

specify how agents are to reach agreement on θ without specifying the social choice function, which

will be specific to each of our proofs.

Finally, it will sometimes be convenient for us to denote a vector of ones with length |N | by 1N

and a vector of length |N | in which all entries are equal to θF by θF = θF · 1N .

F Consensus algorithms in the Trilemma

This section describes consensus algorithms used in our benchmark result and in the proofs

related to the Trilemma. The constructions are involved but well-known in the computer science

literature. We additionally prove the algorithms’ correctness and characterize the types of devia-

tions that are possible for coalitions of strategic agents.

F.1 The shutdown fault algorithm

In this section, we present an asynchronous consensus algorithm that is appropriate for our

benchmark model, in which faulty nodes simply do not communicate. The algorithm is based

loosely on the filter algorithm presented in Toueg (1983) and the asynchronous consensus algorithm

presented in Section 2 of Bracha and Toueg (1985). However, since we later adapt the consensus

6

algorithm for the case of malicious faults in Bracha and Toueg (1985), we do not call the algorithm

in this section the Bracha-Toueg algorithm.

The algorithm consists of two consecutive sub-algorithms: the filter algorithm and the majority

vote algorithm, which we describe below. Nodes will internally keep track of values θ̂
n ∈ Θ̃. The

purpose of the filter algorithm is to narrow the possible range of outcomes available to nodes, so

that in the majority vote algorithm, each makes only a binary choice. After both algorithms are

completed, each node will have a terminal value θ̂
n
. In this section, we will prove properties of

nodes’ terminal values under this algorithm. In the proof of the existence result of the Blockchain

Trilemma, we will describe how a node’s terminal value translates into a decision made by that

node.

The filter algorithm: The message vocabulary for the filter algorithm has three types of

messages: type broadcasts of the form n : θ, indicating that agent n declares her type to be θ,

profile broadcasts of the form n : θ̂, indicating that agent n declares her node’s current value to be

the profile of types θ̂, and echoes, which have the same form as profile broadcasts. The space of

messages for the filter algorithm is therefore

MF = MT ∪MP ∪ME ,

MT = {n : θ | n ∈ N , θ ∈ Θn},MP = {n : θ̂ | n ∈ N , θ̂ ∈ Θ̃}, ME = {e : m | m ∈ MP }

We also need to specify the messages that nodes are permitted to send at each information set (the

set Mn(Hnk)). A node may not send a type or profile broadcast with a signature different from its

own. Furthermore, node n may only send a profile broadcast θ̂ = {θ̂n′}n′∈N if, for all n′ such that

θ̂n′ ̸= θF , node n previously received a type broadcast n′ : θ̂n. The requirements to send an echo

are precisely the same as those to send the corresponding profile broadcast.

We outline the algorithm below.

Algorithm F.1 (Filter algorithm (J) in the shutdown case). Each node n initializes its value to

θ̂nn′ = θF for all n′ and communicates using the following protocol.

1. Node n sends a type broadcast n : θn to all other nodes.

� Whenever n receives a type broadcast n′ : θn′, it updates its value by setting θ̂nn′ = θ′n. It

ignores any subsequent type broadcasts from the same node.

� Node n moves to the next step after it has received at least N − J type broadcasts.

2. Node n sends a profile broadcast n : θ̂
n
to all other nodes.

� After node n receives profile broadcasts from at least N − J other nodes (of the form

n′ : θ̂
n′
), it sets

θ̂
n
=

{
θ̂
∗

a majority of received profile broadcasts are equal to some θ̂
∗

θF · 1N there is no majority value

7

(where 1N denotes a vector of N ones) and moves to the next step.

3. Node n sends an echo e : n : θ̂
n
to all other nodes.

� After receiving echoes from at least N − J other nodes, node n sets a final value

θ̂
n
=

{
θ̂
∗

all received echoes are equal to some θ̂
∗

θF · 1N there is no unanimous value

We now prove that after running the filter algorithm, when there are at most J ≤ ⌊N2 ⌋ faulty

nodes, then each node either has some value θ̂
∗ ∈ Θ̃ or the value θF · 1N .

Lemma F.1. Suppose Assumption 1 holds and that there are at most J ≤ ⌊N2 ⌋ faulty nodes.

Then if all non-faulty nodes follow the communication protocol in Algorithm F.1, (1) the algorithm

eventually terminates, and (2) there exists θ̂
∗ ∈

∏
n∈N

Θ̃n such that θ̂
n ∈ {θF · 1N , θ̂

∗} for all non-

faulty nodes n.

Furthermore, for all n such that θ̂
∗ ̸= θF , θ̂

∗
= θn, and any such value θ̂

∗
with at most J

entries equal to θF is reached with positive probability.

Proof. To see that the algorithm eventually terminates, note that in each step, a node must receive

messages from N − J nodes in order to proceed to the next step. Since at most J nodes are faulty,

and messages are delivered with some maximum lag ∆, a node will always terminate the protocol

so long as all N − J non-faulty nodes communicate according to it.

Next, suppose that two non-faulty nodes n, n′ have distinct values θ̂
n ̸= θ̂

n′
that are not equal

to θF · 1N . This implies that in the third step of Algorithm F.1, n received at least N − J echoes

of θ̂
n
, while n′ received at least N − J echoes of θ̂

n′
. Since 2(N − J) > N , it must be that some

non-faulty node sent n and n′ different echoes, which is impossible if all non-faulty nodes follow

the protocol.

To prove the second part of the lemma, first note that the instructions in the first step imply

that no matter what node n’s value θ̂
n
is, it will be the case that θ̂

n

n′ ∈ {θn′ , θF } for each n′. Then,

note that with positive probability, the following happens: some subset of nodes S with |S| ≥ N−J

send each other type messages that are received by all other nodes in S in the second round, but

no node in S receives a message from a node not in S, so that all nodes in n ∈ S have a value θ̂
∗

such that θ̂
n

n′ = θn′ for all n′ ∈ S and θ̂
n

n′ = θF for n′ ̸∈ S. Since N − J > N
2 , it must be that in

step 2, any node following the protocol will terminate the second step with value θ̂
∗
, meaning that

this value will be chosen by all nodes that follow the protocol in Step 3.

The majority rule algorithm: In the majority rule algorithm, each node keeps track of a

value θ̂
n ∈ Θ̃, a phase number t, and a cardinality q (which is a positive integer). Each message

also has the same form: a message is m = t : q : θ̂, where q is the message’s cardinality, t is its

phase number, and θ̂ is its value. Hence, the message space is

Mmaj = {t : q : θ̂ | t ∈ N, q ∈ N, θ̂ ∈ Θ̃}.

8

A node can send a message m = t : q : θ̂n only if it received at least q messages of the form t′ : q′ : θ̂

previously. We proceed with the description of the algorithm.

Algorithm F.2 (Majority rule algorithm (J)). Nodes begin with the value θ̂
n
that they computed

in the Filter (J) algorithm, phase t = 0, and cardinality q = 1. They communicate according to the

following protocol.

1. Node n sends message t : q : θ̂
n
to all other nodes, where t represents its current phase, q

represents its current cardinality, and θ̂
n
is its current value.

� Once n has received N − J messages during its current phase, if it received a message

for a value θ̂
n
with cardinality q > N

2 (called a witness for θ̂), and it only received such

a message for one value, it updates its value to θ̂
n
.

� Otherwise, it updates its value θ̂
n
to the majority among those values (if one exists) or

θF · 1N (if not).

� Node n then updates its phase to t+ 1 and sets its cardinality q equal to the number of

messages with value θ̂
n
that it received during phase t.

2. If, in phase t, node n received more than J witnesses for a value θ̂, it stops updating its

phase, value and cardinality (but continues to send messages). Otherwise, it goes back to the

beginning of step 1.

We now prove that (1) when all non-faulty nodes follow the protocol, and there are at most J

faults, it terminates in finite time, (2) all nodes that follow the protocol reach agreement on a value

consistent with their types, and (3) all such values are reached with positive probability.

Proposition F.1. Suppose that Assumption 1 holds and that there are at most J faulty nodes.

Then if all non-faulty nodes follow Algorithm F.1 followed by Algorithm F.2, the communication

protocol terminates in finite time, all non-faulty nodes terminate with a value consistent with their

types, and all such values are reached with positive probability.

Proof. This proof is adapted from Bracha and Toueg (1985). We first define some terms for what

follows. A message of the form t : q : θ̂ is called a t-message for θ̂, and if q > N
2 , it is called a

t-witness. A node is said to decide in phase t if its phase is t when it finishes Step 2 of Algorithm

F.2.

We prove the theorem by showing the protocol’s consistency, then show that non-faulty nodes

reach agreement on all possible values consistent with their types. Then we prove two properties

(deadlock-freedom and convergence) that together prove the algorithm terminates in finite time.

Consistency: Let t be the smallest phase in which a node decides. We prove that in phase

t, there cannot be two nodes n and n′ that each have witnesses for different values. We proceed

by contradiction. Suppose that n received a witness in t for θ̂
∗
, while n′ received a witness in

t for θF ≡ θF · 1N . This means that n received a t − 1-witness from some n′′ for θ̂
∗
, while q

9

received a t − 1-witness for θF from some n′′′. In turn, this implies that n received more than N
2

t − 2-messages for θ̂
∗
, while n′′′ received more than N

2 t − 2-messages for θF . This is impossible

unless some node sent conflicting t − 2-messages, contrary to our assumption that all non-faulty

nodes behave honestly.

Now suppose that node n decides (for example) θ̂
∗
in phase t. We prove that no node n′ can

ever decide θF . If n decides in phase t, it must have more than J witnesses for θ̂
∗
. By the claim

we proved above, it is therefore not possible that n′ has any witnesses for θF . Hence, if n′ also

decides in phase t, it must decide θ̂
∗
.

Next, we show that all t-messages must have value θ̂
∗
. Since n decides at t, it must have

received more than J t − 1-witnesses. Any other node that sends a t-message receives at least

N −J t− 1-messages, so one of those messages must be a t− 1-witness. By the protocol definition,

any such node must therefore set its value to θ̂
∗
at t, so all t-messages have the desired form. This

argument implies that any node n′ that decides in t+ 1 must also decide θ̂
∗
.

Given that all t-messages have value θ̂
∗
, it must be that all t + 1-messages are of the form

t + 1 : q : θ̂
∗
for q ≥ N − J . Therefore, all these messages are witnesses for θ̂

∗
, meaning that any

node deciding at t + 2 will decide θ̂
∗
. Moreover, any node that reaches phase t + 2 will decide θ̂

∗

in that phase, so no node ever enters phase t+ 3.

It is clear that nodes may eventually agree on either θ̂
∗
or θF . If all nodes begin with the same

value, then by the proof above, all nodes will decide on that value in two phases.

Deadlock-freedom: We prove that no node ever remains in a phase t permanently without

advancing. Suppose, for the sake of contradiction, that a set D of nodes are deadlocked (in phases

tdn for n ∈ D). Let t0 = min
n∈D

tdn and let n be a node that is deadlocked in phase t0. Take some

arbitrary set of non-faulty nodes S with |S| = N − J . There are two cases.

Case 1. No node decides in a phase t with t ≤ t0 − 2. Then, since t0 is the minimal phase at

which a node gets deadlocked, all nodes in S must decide in t0 − 1, decide in t0, or reach phase t0

without deciding. In all of these cases, nodes in S will send t0-messages at some point to all other

nodes. Therefore, every node will eventually receive at least |S| = N − J t0-messages, so no node

will ever be deadlocked in t0, a contradiction.

Case 2. Some node decides in t ≤ t0 − 2. In the consistency proof, we showed that if a node

decides at t, then no node ever reaches a phase greater than t + 2, and all nodes that reach t + 2

decide. Therefore, all nodes that are deadlocked must be at t0, and they all must eventually decide,

a contradiction.

Convergence: Now we prove that every node decides in finite time with probability one, no

matter how many phases have already elapsed. Let S be the set of non-faulty nodes, and suppose

that no n ∈ S decides before some round k0. We show that there exists a positive constant in (0,1)

such that with probability at least ρ, all nodes in S decide by round k0 + 2.

With some probability ρ, all nodes in S receive messages from all other nodes in S in round

k0 + 1. Then, with the same probability, the same thing happens in rounds k0 + 2 and k0 + 3. By

our proof of consistency, if this occurs, then all nodes in S will decide by round k0+3 with at least

10

probability ρ3.

F.2 The revision algorithm

In this section, we outline a “revision algorithm” that we will sometimes use as an extension

to the shutdown fault algorithm presented in the previous section. The revision algorithm, which

uses proof-of-work, effectively consists of a repetition of the shutdown fault algorithm.

In the revision algorithm, all nodes keep track of a phase number t and a value θ̂
n
. There are

two types of messages: costly broadcasts and free broadcasts.

A costly broadcast is of the form n : 0 : θ̂ for some θ̂ ∈ Θ̃, and n denotes the signature of the

node sending the broadcast. A free broadcast is of the form n : t : θ̂ for t ≥ 1. The spaces of costly

and free broadcasts are therefore

MC = {n : 0 : θ̂ | n ∈ N , θ̂ ∈ Θ̃},MF = {t : θ̂ | t ≥ 1, θ̂ ∈ Θ̃, n ∈ N}

A node cannot send a costly broadcast n : 0 : θ̂ unless, while the shutdown fault algorithm was

running, it received at least N − J witnesses for θ̂ (see Section F.1 for definitions). A node cannot

send a free broadcast 1 : θ̂ unless it received a costly broadcast for θ̂ for all n such that θ̂n ̸= θF .

Likewise, a node cannot send a free broadcast n : t : θ̂ for t > 1 unless it received a free broadcast

n : t− 1 : θ̂ from all n such that θ̂n ̸= θF . The one exception occurs if θ̂ = θF (as in the previous

section): broadcasts for θF can be sent by any node at any time. Additionally, of course, a node

cannot send any type of broadcast bearing a different node’s signature. Finally, a costly broadcast

n : 0 : θ̂ requires that the sender pay a cost κ(n, θ̂), which we specify in the proof of the existence

result in Proposition 3.

We next describe the algorithm. This algorithm is meant to run after the two algorithms

described in Section F.1.

Algorithm F.3 (Revision algorithm (T ∗)). Each node n enters with a value θ̂
n

computed in

the Majority Rule algorithm (Algorithm F.2) and a phase number of t = 0. Nodes communicate

according to the following protocol.

1. When a node n is in phase t = 0, it sends a costly broadcast n : 0 : θ̂
n
to all other nodes.

� If n receives a costly broadcast of the same value θ̂
n
from each n′ such that θ̂nn′ ̸= θF

before receiving a costly broadcast for any other value, then it updates its phase to t = 1

and moves to the next step.

� If n receives a costly broadcast for some value θ̂
′ ̸= θ̂

n
, it updates its value θ̂

n
to θF ,

updates its phase to t = 1, and moves to the next step.

2. When node n is in phase t > 0, it sends a free broadcast of its value n : t : θ̂
n
to all other

nodes.

11

� If n receives a free broadcast of the same value, n′ : t : θ̂
n
, from each n′ such that

θ̂nn′ ̸= θF before receiving a costly broadcast for any other value, then if its phase is T ∗,

it permanently stops updating its phase and value (although it continues to broadcast).

Otherwise, it updates its phase to t+ 1 and moves to the next step.

� If n receives a free broadcast n′ : t : θ̂
′
for some value other than θ̂

n
, then n updates its

value to θ̂
n
= θF and updates its phase to t+ 1.

We now establish some properties of the revision algorithm. We will not be interested in

convergence on a single value or the algorithm’s termination. The revision algorithm will be used

to dissuade dishonest, off-equilibrium deviations. Hence, we focus on characterizing the probability

with which nodes can draw different conclusions under the revision algorithm (considering the

possibility that in the filter and majority rule algorithms, some nodes acted dishonestly).

Proposition F.2. Consider a set of nodes S that communicate honestly according to Filter al-

gorithm (J) (Algorithm F.1), Majority Rule algorithm (J) (Algorithm F.2), and the Revision al-

gorithm (T ∗) (Algorithm F.3). Then the probability that two nodes n, n′ ∈ S decide on different

values θ̂ (such that for a majority of entries n, θ̂n ̸= θF) is at most 1−
(

T ∗

1+T ∗

)|S|
.

Proof. Let k0 be the first round in which some node n ∈ S receives a costly broadcast for some

value θ̂ (such that for more than N
2 entries n′, θ̂n′ ̸= θF). Now suppose that in some round k ≥ k0,

another honest node n ∈ S receives a different costly broadcast for such a value θ̂
′
. Note that,

since each of θ̂ and θ̂
′
have a majority of entries not equal to θF , there must be some n′′ ∈ N that

sent a costly broadcast of θ̂ to n and a costly broadcast of θ̂
′
to n′.

If n eventually accepts θ̂ and n′ eventually accepts θ̂
′
, then by the protocol definition in Algo-

rithm F.3, it must be that n delivers at least T ∗ messages to n′′ before n delivers a single message

to n′. This is because for each phase t of the revision algorithm, when n′′ sends a message to n, n′′

must provide proof-of-receipt that n delivered a message to n′′ in phase t− 1.

Let d0 be the time it takes for the message sent by n in round k0 to reach n′, and let d1, . . . , dT ∗

be the delivery times for the messages from n to n′′ (starting in round k0). The probability that n′

accepts θ̂
′
is at most Pr(d0 ≤

T ∗∑
k=1

dk). Message delivery times are IID according to a distribution G,

so by symmetry, this probability is exactly equal to Pr(dk ≤ d0+d1+ · · ·+dk−1+dk+1+ · · ·+dT ∗).

There are 1 + T ∗ such probabilities, so it must be that Pr(d0 ≤
T ∗∑
k=1

dk) ≤ 1
1+T ∗ . Therefore, the

probability that n and n′ decide on different outcomes can be no larger than 1
1+T ∗ .

Consider the probability

P ∗ ≡ Pr(̸ ∃ ñ ∈ S : ñ decides on a value different from n).

We have shown that a necessary condition for any ñ to decide on a different value from n is for ñ

to deliver T ∗ messages to some dishonest node before n delivers a single message to ñ. Let Pn,ñ

denote the probability that this occurs. Using the independence of message delivery times, P ∗ then

12

satisfies

P ∗ ≥
∏
ñ∈S

(
1− Pn,ñ

)
≥

(
1− 1

1 + T ∗
)|S|

=
(T ∗

1 + T ∗)
|S|.

F.3 The Bracha and Toueg (1985) algorithm

The algorithm we present in this section does not require the assumption of synchronous

communication– it can be implemented under asynchronous communication as well (Assumption

4). Our algorithm is adapted from the one first derived in Section 3.3 of Bracha and Toueg (1985).2

We will show that when at most one-third of nodes behave dishonestly, it is possible for others to

achieve consensus, no matter how malicious the dishonest nodes are.

Just as in the shutdown fault algorithm, nodes will internally keep track of values θ̂
n ∈ Θ̃ and

a phase number t. The value held by node n in phase t is denoted θ̂
n

t .

The message vocabulary consists of three types of messages: initial messages, broadcasts, and

echoes. An initial message is of the form m = (n : θ, t) for some n ∈ N , θ ∈ Θn, denoting a message

signed by n declaring that its input is θn = θ. A broadcast is of the form m = (n : θ̂, t) for some

n ∈ N , θ̂ ∈ Θ̃, and t ∈ N. In a broadcast, a node signs a statement declaring that its current value

is θ̂
n

t = θ̂ and that it is in phase t. An echo is of the form m = n : (n′ : θ̂, t), denoting a message

by n declaring that it received broadcast n′ : θ̂ from a node n′ in phase t. The full set of messages

is M = MI ∪MB ∪ME , where

MI = {n : θ | n ∈ N , θ ∈ Θn}

MB = {(n : θ̂, t) | n ∈ N , θ̂ ∈ Θ̃, t ∈ N}, ME = {n : m | n ∈ N , m ∈ MB}

Nodes cannot forge others’ signatures, so they are only permitted to send messages with their

own signatures. Additionally, when sending an echo, a node must provide a proof-of-receipt, so a

node cannot send echo n : n′ : θ̂ unless it previously received broadcast n : n′ : θ̂. Finally, a node

cannot send a broadcast of an initial input it never received. If a node sends the broadcast n : θ̂,

then for all n′ such that θ̂n′ ∈ Θ, node n must have received the initial message n′ : θ.

We outline the algorithm below. It consists of two parts: the “filter algorithm” and the algorithm

outlined in Bracha and Toueg (1985). The filter algorithm, as we show, reduces the set of values

that nodes may start with in the Bracha-Toueg algorithm, which applies only to binary values.

Algorithm F.4 (Filter algorithm (J)). Nodes initialize their values to θ̂
n

n′ = θF for all n′ and

communicate using the following protocol.

Initial stage

1. Node n sends the initial message n : θn to all other nodes.

2. When a node receives a message n′ : θ, it sets θ̂
n

n′ = θ.

2Our adaptation of their proof also draws elements from the filter algorithm described in Toueg (1984, Figure 4).

13

3. Once a node has received N − J such messages, it moves to the second stage.

Second stage

1. Node n sends the broadcast message n : θ̂ to all other nodes.

2. Once a node has received a set H of N − J such messages, it updates each n′-th component

of θ̂
n
to either

� The most frequent input θ among the values θ̂n′ that it received, if that value occurred

at least N − 2J times;

� θF , if no such value exists.

Then, node n moves to the final stage.

Final stage

1. Node n sends a message m = n : (θ̂, H), including a proof-of-receipt of the set of messages H

that it received in the previous phase.

2. Once n receives N − J such (valid) echo messages, it updates each component n′ of θ̂
n
as

follows:

� If there exists θ such that for all accepted echoes θ̂n′ = θ, then θ̂
n

n′ is set equal to θ;

� Otherwise, θ̂
n

n′ is set equal to θF .

3. Node n terminates the filter algorithm and initiates the BT(J) algorithm.

Lemma F.2. Filter algorithm (J) eventually terminates so long as at least N −J nodes follow the

protocol honestly, as long as J < N
3 . When the algorithm terminates, for each n ∈ N , there exists

θ∗n ∈ Θ such that all honest nodes n′ have θ̂
n′

n ∈ {θ∗n, θF } (where θ∗n = θn for honest nodes).

Furthermore, for all n such that θ̂
∗ ̸= θF , θ̂

∗
= θn, and any such value θ̂

∗
with at most J

entries equal to θF is reached with positive probability.

Proof. The proof that the filter algorithm terminates is identical to the proof that the BT algorithm

terminates, so we postpone it to the proof of Proposition F.3 below.

Suppose that two honest nodes n, n′ terminate with values of ñ’s input θ̂
n

ñ, θ̂
n′

ñ ∈ Θ̃ (distinct

from θF). Let these values be denoted θ and θ′. Denote by S the set of N − J nodes from which

n accepted messages (all of whom sent value θ). At least N − 2J nodes in S must also have sent

messages that were accepted by n′. The first part of the consistency proof in Proposition F.3 shows

that the values accepted by n and n′ must be identical, so n′ accepts at least N − 2J values equal

to θ. But N − 2J > N−J
2 , so the majority of values accepted by n′ are equal to θ, meaning either

θ̂
n′

ñ = θ or θ̂
n′

ñ = θF . Hence, θ∗ñ = θ.

14

We now show that the values θ∗ñ are consistent with nodes’ initial inputs. Note that in order

for a node to accept a value θñ, it must be broadcast with an appropriate proof that ñ sent that

value in the initial phase. Therefore, θ∗ñ = θñ for all honest nodes ñ.

To prove the second part of the lemma, first note that the instructions in the first step imply

that no matter what node n’s value θ̂
n
is, it will be the case that θ̂

n

n′ ∈ {θn′ , θF } for each n′. Then,

note that with positive probability, the following happens: some subset of nodes S with |S| ≥ N−J

send each other type messages that are received by all other nodes in S in the second round, but

no node in S receives a message from a node not in S, so that all nodes in n ∈ S have a value θ̂
∗

such that θ̂
n

n′ = θn′ for all n′ ∈ S and θ̂
n

n′ = θF for n′ ̸∈ S. Since N − J > N − 2J , it must be that

in the second phase, any node following the protocol will terminate the second step with value θ̂
∗
,

meaning that this value will be chosen by all nodes that follow the protocol in the third phase.

Algorithm F.5 (Algorithm BT(J)). Nodes use the values θ̂
n
computed in filter algorithm (J) and

communicate using the following protocol.

1. If node n is in phase t, it sends the broadcast m = (n : θ̂
n

n′ , t) to all other nodes.

2. The first time a node n receives a broadcast (n′ : θ̂, t) from each other node n′, it sends an

echo n : (n′ : θ̂, t) to all other nodes.

3. Node n accepts value θ̂ from node n′ if it receives more than N+J
2 echoes of the form n′′ : (n′ :

θ̂, t).

4. Once n accepts at least N − J values, it updates its value θ̂ and enters main phase t+ 1.

� For each component n′ of θ̂
n

n′,t+1 is updated to either (1) whichever value was in the

majority of the newly accepted values θ̂n′, if such a majority exists, or (2) θF , if there

is no (strict) majority among the newly accepted values.

� If n accepted at least N+J
2 identical values θ̂ and has not decided on a value yet, then n

decides θ̂.

We can now prove that this algorithm permits nodes to come to an agreement when at most

one-third act dishonestly.

Proposition F.3. Algorithm BT(J), for J ≤ ⌊N−1⌋
3 , achieves consensus among all honest nodes

if at most J nodes act dishonestly, and the consensus value is consistent with the inputs of honest

nodes. If all non-faulty nodes initiate the protocol with the same value, they reach consensus on

that value.

Proof. Deadlock-freedom: First, we show that the consensus algorithm does not deadlock. Con-

sider an honest node n that has repeated the main phase t times, where t is the lowest number

of times the main phase has been repeated by any honest node. Then, all other honest nodes n′

have already sent broadcasts in main phase t, meaning that eventually, those honest nodes will

15

also receive those broadcasts and send echoes. Since there are at least N − J honest nodes and

N − J > N+J
2 , n will eventually receive at least N+J

2 echoes of the value sent by n′ and accept it.

Consistency: Now we prove that if two honest nodes n and n′ accept a value from some

node n′′ in phase t, then those values must be equal. Suppose, for the sake of contradiction, that n

accepts a value θ̂ and n′ accepts θ̂
′
. Then, node n received more than N+J

2 echoes of θ̂ from n′′, and

node n received more than N+J
2 echoes of θ̂

′
from n′′. This implies that more than J nodes echoed

both θ̂ and θ̂
′
. This is not possible, though, because we assume at most J nodes act dishonestly,

and by the protocol definition, an honest node would never echo both values.

We must also show that when an honest node decides, then all other honest nodes eventually

decide on the same value. Suppose that node n is the first to decide (in some phase t). If its

terminal value θ̂
n
satisfies θ̂

n

ñ = θ∗ñ ∈ Θ, it needs to be shown that eventually, all other honest

nodes n′ will decide θ̂
n′

ñ = θ. Given that n decides on θ̂
n

ñ = θ, it must be that in phase t, n received

values satisfying θ̂ñ from at least N+J
2 other nodes (say, in a set S).

By the deadlock-freedom property, in phase t, all other honest nodes n′ will accept at least

N − J values. Given that N − J > N+J
2 , it must be that node n′ accepts messages from more

than N+J
2 − J = N−J

2 honest nodes in the set S, who must have sent the same values to n and n′.

Therefore, a majority of the messages accepted by node n′ have value θ for component ñ, meaning

in phase t, n′ updates its value so that its ñ-th component is θ. This argument implies that at phase

t + 1, all honest nodes have value θ for node ñ. Thereafter, no honest node will ever change the

ñ-th component of its value to anything other than θ. A node needs to receive at least N−J
2 echoes

in any phase in order to decide against θ, but given that there are at most J < N−J
2 dishonest

nodes, and all honest nodes from that point forward have value θ, it is not possible for this to ever

happen.

Now, suppose that node n decides on a value such that θ̂
n

ñ = θF . A parallel argument applies,

so that all other honest nodes must end phase t with value θF and must keep that value thereafter.

Therefore, after some honest node n decides, all other honest nodes n′ have values θ̂
n′

that are

equal to the value held by n and are consistent with (at least) the initial inputs of honest nodes

(since for all honest nodes, θ∗n = θn).

Finally, note that if all non-faulty nodes start the protocol with the same value, they must

eventually agree on that value. Nodes enter with one of two values, θ̂
∗
or θF = θF ·1N (by Lemma

F.2). If all non-faulty nodes start with value θ̂
∗
, then since N − J > N+J

2 , no non-faulty node

can ever update its value to θF , meaning they must reach agreement on θ̂
∗
. The same argument

applies if all non-faulty nodes enter with value θF .

Convergence: After some history of communication, let S be the subset of honest nodes that

have not yet decided. Suppose that no such node has decided in any phase t < t0 (for some t0).

All nodes in S eventually reach phase t0 with probability one. Note that in phase t0, with positive

probability, nodes in S only communicate with each other and other honest nodes that have already

decided. Then, all nodes in S must exit phase t0 with the same value. In phase t0 + 1, again with

positive probability, all nodes in S may communicate only with each other and with honest nodes

16

that have decided. Agreement on a value is unanimous, so all nodes in S decide in phase t0+1.

Having proved the correctness of the algorithm, we now prove a proposition describing the range

of deviations that are possible under this consensus algorithm. We will say there is agreement on

a value θ ∈ Θ̃ if, at some point during the execution of the algorithm, all n ∈ S(θ) decide θ.

Proposition F.4. Fix a type profile θ and let S (with |S| > N
3) be a coalition of agents. Then any

deviation from honesty by agents in S must lead to a set of agreements on type profiles θ̂1, . . . , θ̂K

with S1 = S(θ̂1), . . . , SK = S(θ̂K) such that

� Sk ∩ Sk′ ⊂ S for all k ̸= k′;

� θ̂k,n = θn for n ̸∈ S.

Then any deviation from the BT(⌊N−1
3 ⌋) algorithm for agents in S must lead to a set of agreements

of this form.

Proof. The content of the proposition is that if agents in S deviate from honest behavior, no agent

n ̸∈ S will (1) decide on multiple different values or (2) decide on a value θ̃ such that θ̃n ̸= θn for

some n ̸∈ S.

The first point is guaranteed by the fact that under the BT algorithm, no node ever decides

more than once. As for the second point, note that in the second phase of the filter algorithm that

precedes the BT algorithm, if n behaves honestly, a node n′ cannot broadcast a profile θ̂ with a

component θ̂n ̸∈ {θn, θF }. This is because sending the broadcast in the second phase requires a

proof-of-receipt that n actually sent the message θn in the first phase. In the final phase of the

filter algorithm, the final value held by a node must be an echo of some valid broadcast sent in

the second round, so it is impossible for the final value of a node n′, θ̂
n′
, to have a component

θ̂
n′

n ̸∈ {θn, θF }.
If agents coordinate on a decision θ̂ after running the BT algorithm, it must be of the form

θ̂n = θn if n ∈ S and θ̂n = θF otherwise (for some consensus set S). Therefore, agents cannot

coordinate on a decision with θ̂n ̸= θn.

F.4 The Lamport, Shostak, and Pease (1982) algorithm

We outline an analogue the algorithm derived by Lamport, Shostak, and Pease (1982) to reach

consensus in a synchronous environment when signed messages are available. We define the message

vocabulary as chains of signed messages. There is a base vocabulary M0 =
⋃

n∈N
Θn, which includes

a message for each possible type θn of agent n. Then, we recursively define the message spaces

Mj = {n : m | n ∈ N ,m ∈ Mj−1}

17

for j = 1, 2, The message n : m denotes message m with node n’s signature appended. In

general, then, a message will take the form

m = n1 : n2 : n3 : · · · : nJ : θ,

denoting that nJ sent message θ, which was then received and signed by nJ−1, which was then

received and signed by nJ−2, and so on. A node n may send message n : m ∈ Mj only if it has

received message m ∈ Mj in the past. Additionally, a node is not permitted to send any message

of the form n′ : m for n′ ̸= n. Hence, a node cannot forge another’s signature.

We now describe the consensus algorithm. Under Assumption 4′.1, the designer is permitted to

make nodes’ strategies depend on the maximum message lag ∆. Nodes are instructed communicate

only in rounds that are integer multiples of ∆, i.e., k = 1, 1 + ∆, 1 + 2∆, This ensures that

if a message is sent in round 1 + j∆, it will be received by all others with certainty before round

1 + (j + 1)∆. For simplicity, we will henceforth refer to round 1 + j∆ simply as round j.

In order to reach consensus, nodes need to reach an agreement on a value θ ∈ Θ̃. Thus, each

node maintains an internal state θ̂
n ∈ Θ̃. The value of each element n′, θ̂

n

n′ , is initialized to θF .

Faulty nodes may not communicate, or they could communicate different values to different non-

faulty nodes, so it is not possible in general for non-faulty nodes to come to an agreement on their

initial inputs. However, it will be possible for them to deduce the identities of faulty nodes. The

consensus algorithm must permit honest nodes to come to an agreement on their values of θ̂
n
.

When non-faulty nodes agree on some θ̂ with S(θ̂) = S, that means they agree on the inputs of

nodes in S.

We say a message m received in round j constitutes a properly signed value θ by node n if that

message is of the form

m = n1 : · · · : nj : θ,

where the signatures n1, . . . , nj are distinct and nj = n. Such a message constitutes evidence that,

at some point, node n send the message θ, and that this signed value was seen by at least j distinct

nodes.

The communication protocol, outlined below, specifies which messages a node should send at

each information set and the point at which a node should recommend an action to its owner.

Under this communication protocol, nodes are instructed to send the same set of messages to all

others in each round, so the instruction “send message m” should be understood as shorthand for

“send message m to all other nodes n′.”

Algorithm F.6 (Algorithm LSP(J)). Nodes communicate using the following protocol.

1. In the first round, a node n with input θn sends message n : θn.

� Upon receiving a message n′ : θn′ from another node n′, node n sets θ̂
n

n′ = θn′.

� If a node n receives multiple messages from another node n′, or no message at all, the

value of θ̂
n

n′ remains θF .

18

2. In any round j > 0, for each message m received by node n in the previous round j − 1, node

n sends message n : m.

� If node n receives a properly signed value θn′ by node n′, and had not previously received

a properly signed value, then n sets θ̂
n

n′ = θn′.

� If node n receives a properly signed value θn′ by node n′, and had previously received a

properly signed value, then n sets θ̂
n

n′ = θF .

3. Communication terminates in round J . Node n decides on value θ̂
n
.

We now prove that the algorithm LSP(J), which terminates in J rounds of communication,

achieves consensus among all honest nodes so long as at most J − 1 nodes behave dishonestly.

Proposition F.5. Algorithm LSP(J) achieves consensus among all honest nodes if at most J − 1

nodes act dishonestly, and the consensus value is consistent with the inputs of honest nodes.

Proof. We need to show that when at most J − 1 nodes fail to follow the communication protocol,

then at the time of termination, all nodes that follow it have the same values of θ̂
n
, and, moreover,

θ̂
n

n′ = θn′ if n and n′ acted honestly throughout the execution of the algorithm. We will call nodes

that follow the communication protocol honest nodes.

First, note that if a node n follows the protocol honestly, then all other nodes n′ that follow

the protocol will terminate communication with the same value of θ̂
n′

n = θn. This is because in the

first round, given that n is honest, it sends all other nodes a properly signed value of θn. Then, all

other nodes that follow the protocol update θ̂
n′

n to θn in the first round. According to the protocol,

this value is reverted to θF only if n′ later receives a properly signed value θ′n ̸= θn by node n.

Under the assumption that n communicates honestly, however, n never sends another message of

the form n : θ′n, so by the assumption that signatures are unforgeable, it is not possible for n′ to

receive such a message.

Now we need to prove that honest nodes have the same value of θ̂ñ for nodes ñ that acted

dishonestly at some point. It suffices to show that if an honest node n ever received a properly

signed value θñ by ñ, then all other honest nodes n′ also received the same value. If all honest

nodes received multiple properly signed values by ñ (or no value), then they will agree on θ̂ñ = θF .

Otherwise, if they all received a single value, they will agree on it.

Suppose that in some round j < J , an honest node n received a properly signed value θ by

ñ. Then in round j + 1, node n would have sent that properly signed value to all other nodes,

guaranteeing that they receive it before round J . Now suppose that n receives a properly signed

value θ by ñ for the first time in round J . The corresponding message is of the form

n1 : n2 : · · · : nJ−1 : ñ : θ.

The identities of the nodes n1, . . . , nJ−1 are distinct from each other and from ñ, by definition.

Now, note that at least one of the nodes n1, . . . , nJ−1 must be honest: if all of them are dishonest,

19

then n1, . . . , nJ−1 and ñ must be dishonest, contradicting the assumption that at most J − 1 nodes

acted dishonestly. Hence, some honest node had seen the properly signed value θ by ñ in some

round j < J , meaning that in round j+1 ≤ J , it had sent that value to all other honest nodes (by

Step 2 of the protocol). Therefore, all other honest nodes have received value θ properly signed

by ñ by the time the protocol terminates. This concludes the proof, showing that all honest nodes

possess the same set of properly signed values, and therefore agree on a value of θ̂.

From this proposition, we can derive conclusions about the ways in which coalitions of nodes

can strategically deviate to affect outcomes.

Corollary 1. Consider a game GS(σ̃F) in which under honest communication, all non-faulty nodes

reach agreement on some value θ̂. Under Algorithm LSP(N), any deviation from honesty by a

coalition of nodes S′ ⊂ S results in consensus among honest nodes on a value θ̂ in the set

Γ(θ̂|S′) = {θ̃ ∈ (Θ ∪ {θF })N : θ̃n = θ̂n ∀ n ̸∈ S′}.

Proof. It is clear from the statement of Proposition F.5 that under algorithm LSP(N) all honest

nodes must agree on a value θ̂n, since if at least one node is honest, at most N − 1 nodes are

dishonest. Furthermore, in the proof of Proposition F.5, we showed that honest nodes agree on the

true inputs θn of all other honest nodes n. Hence, the consensus value θ̂ must have θ̂n = θn for all

honest n.

Clearly, for each θ̂
′ ∈ Γ(θ̂|S), there exists a deviation for agents in S results in a consensus on

the value θ̂′. Each n ∈ S′ simply has to send all others the message n : θ̂′n in the first round and

then behave exactly as the communication protocol specifies. It then remains to prove that these

are the only outcomes achievable through deviations by S′. As already stated, it is not possible

that by deviating, agents in S′ could achieve an outcome in which consensus is reached on some θ̂
′

such that θ̂
′
n ̸= θn for a non-faulty agent n ̸∈ S.

Furthermore, under the LSP algorithm, the value of θ̂n for a faulty node n accepted by any

non-faulty agent n′ ̸∈ S′ must be properly signed. This means that there must have been a message

of the form n : θ̂n sent by n in the first round. The message sent by n in the first round cannot

depend on the behaviors of nodes in the deviating coalition, so it is not possible for agents in S′ to

jointly deviate and reach an outcome θ̂
′
such that θ̂′n ̸= θ̂n for a faulty node n.

This corollary implies that under the LSP algorithm, a coalition of dishonest nodes can at

most misreport their types, or they can report nothing (resulting in all honest nodes imputing the

fictitious value θF for their inputs). These are precisely the same deviations that are possible for

coalitions of strategic agents under the mediated consensus algorithm.

G Proof of the existence result

In this section, we prove the existence result in the Blockchain Trilemma. The result actually

requires three separate proofs: one showing that there exists a consensus algorithm that gives up

20

only fault-tolerance (i.e., is resource-efficient and achieves full transferability), one showing the

existence of a consensus algorithm that gives up only full transferability, and one showing that

there exists a consensus algorithm that gives up only resource-efficiency. For short, we call these

the fault-tolerance proof, the full transferability proof, and the resource-efficiency proof.

G.1 Fault-tolerance proof

Proposition G.1. Under Assumptions 1-4, there exists a consensus algorithm (G, C) that is

resource-efficient and achieves full transferability.

Proof. The social choice function: We begin by defining a social choice function that the con-

sensus algorithm will implement. We assume that the designer uses the following private random-

ization scheme. Agents draw signals ϕn of the form (j, g), where j is an integer drawn uniformly

from {1, . . . , N}, and g : Θ → X is a map from states of the world Θ to a Pareto-efficient and

individually rational outcome for each state (drawn uniformly from the set of such maps, which is

finite). Hence, Φ = {1, . . . , J} × Ωg, where

Ωg = {g : Θ → X : g(θ) is individually rational ∀ θ ∈ Θ}.

We define the highest-ranking signal ϕmax(θ) to be

� The ϕn with the highest index j, if a unique maximum exists;

� If there is a tie between multiple values ϕn1 , . . . , ϕnk
, then the tie is broken by choosing the

agent with the lowest index (n1 here).

Then, we use the following social choice function. If ϕmax(θ)(jmax, gmax) is the highest-ranking

signal, and θ is the profile of preferences given the profile of types θ, then

F (θ) = gmax(θ).

If the consensus algorithm succeeds in implementing this social choice function, then it will ac-

complish the goal of full transferability. By construction, in state θ, each Pareto-efficient and

individually rational outcome x ∈ X IR(θ) is chosen with positive probability.

The consensus algorithm: The message vocabulary that agents will use in this consensus

algorithm has two types of messages: broadcasts and echoes. A broadcast is a signed message of

the form n : θ for some n ∈ N and θ ∈ Θn. A broadcast n : θ is a declaration by n that their type

is θ. An echo is a signed message of the form n : θ̂ for n ∈ N and θ̂ ∈ Θ̃. An echo indicates that n

received the types θ̂n′ from each n′ ∈ N . The spaces of broadcasts and echoes are then

MB = {n : θ | n ∈ N , θ ∈ Θ}, ME = {n : θ̂ | n ∈ N , θ̂ ∈
∏
n∈N

Θn}.

Nodes are required to provide proofs-of-identity when they send any message, meaning node n

may send only messages of the form n : θ and n : θ̂. Additionally, nodes are required to provide

21

proofs-of-receipt when they send echoes. Hence, a node is not permitted to send an echo n : θ̂

unless it has received a message n′ : θ̂n′ from every other node n′ ∈ N . This is where we use

Assumption 3. In this particular case, nodes are permitted to decide on any value in any round (so

Dnk = X).

The communication protocol specifies that if it has not already done so, a node n should send

broadcast n : θ to all other nodes n′ (where θ is the type of agent n). Then node n should wait until

it receives exactly one broadcast from all other nodes. Once it has received a broadcast n′ : θ̂n′

from every other node, it sends the echo n : θ̂
n
to all others, where θ̂

n

n′ = θ̂n′ . Finally, node n waits

until it has received exactly one echo n′ : θ̂
n′

from all other nodes. If all of the values θ̂
n′

in those

echoes are equal to each other and to θ̂
n
, node n decides on the outcome F (θ̂

n
). Otherwise, the

node does not decide. If a node n receives more than one message from another n′ in the broadcast

phase or the echo phase, it ceases communicating entirely. Note that this communication protocol

is feasible under Assumption 4: no part of it makes reference to the number of rounds that have

elapsed nor to the maximum message delay ∆.

Incentive-compatibility: We must check that honest communication according to the con-

sensus algorithm is an equilibrium whenever there are no faulty nodes. We verify that no coalition

S ⊂ N has an incentive to deviate from the protocol. There are two cases: the case in which the

deviating coalition is a subset of N and the case in which the deviating coalition consists of all

agents in N . In both cases, we will use the fact that the outcome x = F (θ) at which agents arrive

by following the protocol is also an equilibrium outcome under the mediated consensus algorithm

(by construction).

Case 1: S ⊊ N . Observe that under this consensus algorithm, it is never possible for two

agents n, n′ whose nodes follow the protocol to decide on different outcomes. Nodes that behave

according to the communication protocol wait until they receive confirmation that all others have

learned the same value θ̂ (and therefore will take the same action). Hence, it is not possible for

two agents whose nodes behave honestly to decide on different outcomes.

Furthermore, note that if n, n′ are agents whose nodes behave honestly, node n′ can never decide

on an outcome F (θ̂) such that θ̂n ̸= θn. The final consensus outcome (if any) will always be one

decided by some honest node. Therefore, the final consensus outcome must satisfy

x̂ = F (θ′) s.t. θ′n = θ̃n ∀ n ̸∈ S, ϕ′
n = ϕn ∀ n ∈ N ,

(where we use the notation θ = (θ1, . . . , θn) = ((θ̃1, ϕ1), . . . , (θ̃n, ϕn))). Of course, we have ϕ′
n = ϕn

for all n because the random signal is verifiable.

Hence, the deviations available to agents in S, when they only deviate to alter the final consensus

outcome, are those that would be available if they lied about their preferences under the mediated

consensus algorithm. On the other hand, if the coalition S does not deviate, the outcome is

x∗ = F (θ), which is the equilibrium outcome with a trusted mediator. Recalling that under the

mediated consensus algorithm agents have no incentive to lie about their types (as demonstrated

by Lemma 1), it must be incentive-compatible for agents in the deviating coalition S to report their

22

types honestly to agents n ̸∈ S.3

Case 2: S = N . In this case, the set of outcomes that occur can be completely arbitrary.

However, recall that the equilibrium prescribed by the mediated consensus algorithm is robust to

coalitional deviations, and the coalitional deviations available under this consensus algorithm are

precisely the same as those that can be achieved under the mediated consensus algorithm.

Full transferability: If nodes behave according to the communication protocol and there

are no faults, the outcome will be F (θ) when the profile of types is θ. By assumption, for each

x ∈ X IR
N (θ), there exists a profile of types θ such that F (θ) = x, meaning the goal of allocative

efficiency is achieved.

Resource-efficiency: In its definition, the message space does not require that agents provide

proof-of-work when sending any message, so the consensus algorithm is resource-efficient.

G.2 Resource-efficiency proof

Proposition G.2. Under Assumptions 1-4, there exists a consensus algorithm (G, C) that is fault-
tolerant and achieves full transferability.

Proof. The consensus algorithm: We use the same social choice function as in Proposition G.1.

The message vocabulary M is comprised of the vocabulary used in the Filter(⌊N−1
2 ⌋) algorithm

Mfilt (described in Algorithm F.1), the vocabulary used in the Majority Rule(⌊N−1
2 ⌋) algorithm

Mmaj (described in Algorithm F.2), and the vocabulary used in the Revision(T ∗) algorithm Mrev

(described in Algorithm F.3), where the constant T ∗ will be specified later. Hence,

M = Mfilt ∪Mmaj ∪Mrev.

The only costly messages are the costly broadcasts in Mrev. For all m ∈ Mfilt ∪ Mmaj, then,

κ(m) = 0. The cost to node n of sending a costly broadcast n : t : θ̂, if θ̂n′ ̸= θF for all n′ ∈ S, is

κ(n : 0 : θ̂) =
∑

y∈y(F (θ̂))

un(y|θ̂n) + tn(F (θ̂)),

which is positive, because by construction, the chosen outcome is individually rational. The permis-

sible set of messages that a node may send at each information set (H, θ) is specified in Algorithms

F.1-F.3. Finally, we must specify the set of outcomes Dnk on which a node n may decide in round

k. We impose that a node n can decide on x = F (θ) only if it has received a costly broadcast of

x from all n′ such that θS,n′ ̸= θF as well as T ∗ free broadcasts from each such node, where T ∗ is

specified below.

The communication protocol dictates that nodes follow the communication strategy outlined in

Algorithm F.1, followed by the strategy in Algorithm F.2, followed by the strategy in Algorithm

3For the case in which preferences are common knowledge, it is not necessary to even consider the possibility that
agents misreport their types.

23

F.3. Let Umax = max
n∈N

max
y⊂

⋃
S∋n

YS

max
θ∈Θ̃n

∑
y∈y

un(y|θ) +
∑

n′∈N
vn′ and κmin = min

m:κ(m)>0
κ(m). The constant

T ∗ specifying the number of phases of communication in Algorithm F.3 is set such that

1−
(

T ∗

1 + T ∗

)N

=
κmin

Umax
.

When nodes reach the end of the Revision algorithm, they decide on whatever value θ̂ they currently

possess, choosing outcome x = F (θ̂) if θ̂ ̸= θF · 1N and an outcome x with y = ∅ and ∆v = 0

otherwise.

Full transferability: We defined the collection of social choice functions F so that for each

individually rational outcome x ∈ X IR
S (θ), in state θ, there exists a profile of types θ ∈ Θ̃ such that

x = F (θ).

Fault-tolerance: We must show that any subset of agents S ⊂ N with |S| > N
2 is a consensus

set. This requires that we show that (1) for any such S, the behaviors specified by the communi-

cation protocol are a fault-tolerant equilibrium, (2) whenever such a set S of nodes communicate

according to the protocol, they come to a consensus on an outcome consistent with their types, and

(3) when nodes in such a set S communicate according to the protocol, they achieve all outcomes

in F (θ) (for some θ ∈ Θ̃) with positive probability.

Points (2) and (3), corresponding to Condition 1 in Definition A.6 and the full transferability

condition condition, are proven by Propositions F.1 and F.1. Both propositions show that if a

majority of nodes follow the communication protocol, then they will eventually reach agreement on

a value consistent with their initial inputs θ. Proposition F.1 shows that when the Majority Rule

algorithm (Algorithm F.2) begins, the range of possible values considered by each node is narrowed

to just two values, θ̂
∗
or θF ≡ θF · 1N , where θ̂

∗
takes all values in

Γ(θ, S) = {θ̂ ∈ Θ̃ : θ̂n ∈ {θn, θF } ∀ n, ∃ S′ ⊂ S s.t. θ̂n = θn ∀ n ∈ S′, |S′| > N

2
}

with positive probability. Then, Proposition F.1 shows that with positive probability, nodes agree

on the value θ̂
∗
derived from the Filter algorithm. Hence, the required condition holds.

We are left with proving that the strategies specified by the communication protocol constitute

a fault-tolerant equilibrium. There are two types of deviations that a coalition S could under-

take: deviations in which they cause multiple outcomes to occur (with positive probability) and

deviations in which only one outcome occurs, but agents in S misreport their types. First con-

sider the possibility of multiple outcomes occurring. By Proposition F.2, no matter what deviation

is attempted by agents in S, the probability that multiple outcomes actually occur is at most

1 −
(

T ∗

1+T ∗

)|S| ≤ 1 −
(

T ∗

1+T ∗

)N
= κmin

Umax
. By construction, the maximum utility that an agent in S

could derive from such a deviation is Umax. The cost incurred by an agent in S who engages in this

deviation is at least κmin. Therefore, the expected value of engaging in the deviation is negative

for all agents in S.

Now suppose that agents in S simply misreport their types. If FS′(θS′) is the outcome that

24

would have been realized under honest behavior by agents in S (for some S′ ⊃ S), then the set of

type profiles that could be realized under such a deviation is

Γ(θ, S|S′) = {θ̂ ∈ Θ̃ : θ̂n = θn, n ∈ S′\S}.

The payoff to an agent in S from such a deviation is

Un({FS′(θ̂)}|θn)− κ(n : 0 : θ̂) =
∑

y∈y(FS′ (θ̂)

un(y|θn) + tn(FS′(θ̂))− κ(n : 0 : θ̂)

On the other hand, under honest behavior, agents in S receive a payoff of zero by construction.

Therefore, if it is the case that it is profitable for coalition S to deviate, it must be that

Un({FS′(θ̂)}|θn)−κ(n : 0 : θ̂) ≥ 0 ⇔
∑

y∈y(FS′ (θ̂)

un(y|θn)+tn(FS′(θ̂)) ≥
∑

y∈y(FS′ (θ)

un(y|θn)+tn(FS′(θ))

for all n ∈ S, with strict inequality for some n. Note that if this condition holds, then there is a

profitable deviation for coalition S under the mediated consensus algorithm: they could misreport

their types in the exact same way so that the mediator receives reports θ̂ instead of θ. By Lemma

1, there is no profitable deviation for S under the mediated consensus algorithm, so this deviation

cannot be profitable either. Hence, no coalition has a profitable deviation from honesty.

G.3 Full transferability proof

Proposition G.3. Under Assumptions 1-4, there exists a consensus algorithm (G, C) that is fault-
tolerant and resource-efficient.

Proof. The consensus algorithm: For each subset of agents S, there is a feasible outcome x0S
such that y(x0S) = ∅ and t(x0S) = 0. We choose a collection of social choice functions such that

FS(θS) = x0S for all θS ∈
∏
n∈S

Θn.

We assume that the message vocabulary consists of the set of messages Mfilt used in the

Filter(⌊N−1
2 ⌋) algorithm for the shutdown case (described in Algorithm F.1) and the messages

Mmaj used in the Majority Rule(⌊N−1
2 ⌋) algorithm (described in Algorithm F.2), so the full message

vocabulary is

M = Mfilt ∪Mmaj.

All messages m ∈ M have a cost of zero, κ(m) = 0. The set of permissible messages Mnk that node

n can send in round k is precisely as described in Algorithms F.1 and F.2. The set of permissible

values Dnk on which node n may decide in round k is Dnk = {x : ∃ S ⊂ N , x = x0S}.
The communication protocol dictates that agents should communicate as described in Algo-

rithms F.1 and F.2.

25

Resource-efficiency: The communication game G does not make use of costly messages, so

this consensus algorithm is resource-efficient.

Fault-tolerance: As usual, we must show that any subset of agents S ⊂ N with |S| > N
2

is a consensus set. This requires that we establish that (1) no sub-coalition of any such subset S

has a profitable deviation from honest behavior, (2) when all nodes in S follow the protocol, they

eventually reach agreement on an outcome, and (3) all outcomes specified by FS occur with positive

probability (taking as given the identity of faulty nodes, N − S).

The implication of Proposition F.1 is that when all nodes follow the filter protocol, the value

held by each node when it terminates is some profile of types that implies an outcome x0S′ for some

S′ ⊂ S. If the value θ̂
∗
given in the statement of Proposition F.1 has θ̂∗n ̸= θF for n ∈ S′, then the

corresponding outcome that will be learned by all nodes is x0S′ . Then, after running the majority

rule algorithm, all nodes will have the same value, as proven in Proposition F.1, so they will all

agree on some such outcome. This argument proves points (2) and (3).

To see that behavior according to the communication protocol is a fault-tolerant equilibrium,

note that no matter what outcome is realized, all agents receive a utility of zero, by construction

(both from transactions and from balance transfers). Therefore, no deviation could possibly be

profitable for a coalition of agents S′ ⊂ S, since no matter how many outcomes are realized, those

agents would receive no utility. Hence, any majority of agents constitutes a consensus set.

H Proof of Proposition 1

In this section, we prove Proposition 1, which extends all of our main results to the case in

which Assumption 1’ holds instead of Assumption 1. The proofs of Lemma 1 and the impossibility

result in Proposition 3 carry through without modification. Note that in our proof of Lemma 1,

we do not impose that faulty nodes necessarily do not communicate – our result holds regardless

of how they behave. Similarly, for the double-spend lemma (Lemma 2) to hold, all we needed

to assume about faulty nodes’ behavior is that it is possible for them to not communicate at all,

but that need not be the only behavior that faulty nodes exhibit. Proposition 3 follows from the

double-spend lemma and Assumption 2, so it continues to hold in under Assumption 1’ as well.

We are then left with proving the existence result in Proposition 3 under Assumption 1’. We will

have to construct new consensus algorithms that accommodate the possibility of arbitrary faults,

so we will need a new proof for each of the three cases presented in Section G.

H.1 Fault-tolerance proof

Proposition H.1. Under Assumptions 1’ and 2 - 4, there exists a consensus algorithm (G, C) that
is resource-efficient and allocation-efficient.

Proof. We must show that there exists a consensus algorithm with at least one consensus set that

implements all Pareto-efficient outcomes and does not make use of costly messages.

26

In the proof of Proposition G.1, we showed that there exists a consensus algorithm (G, C) that
achieves both resource-efficiency and full implementation. The consensus algorithm, by construc-

tion, had only a single consensus set: the full set of agents N . Whether N is a consensus set is

independent of our assumptions about the behavior of faulty nodes, since by definition, N is a

consensus set if the communication protocol C is a fault-tolerant equilibrium in GN = G (in which

no node is faulty). Hence, N is also a consensus set of this consensus algorithm under Assumption

1’ in place of Assumption 1. Therefore, (G, C) achieves resource-efficiency and full implementation

under Assumption 1’ as well.

H.2 Resource-efficiency proof

Proposition H.2. Under Assumptions 1’ and 2-4, there exists a consensus algorithm (G, C) that

is strongly fault-tolerant and allocation-efficient.

Proof. The consensus algorithm: We use a construction analogous to that in the proof of

Proposition G.2. The social choice function is the same as in the previous proof.

The message vocabulary M is comprised of the vocabulary used in the Filter(⌊N−1
3 ⌋) algorithm

Mfilt (described in Algorithm F.4), the vocabulary used in the BT(⌊N−1
3 ⌋) algorithm MBT (de-

scribed in Algorithm F.5), and the vocabulary used in the Revision(T ∗) algorithm Mrev (described

in Algorithm F.3), where the constant T ∗ will be specified later. Hence,

M = Mfilt ∪MBT ∪Mrev.

As in the proof of Proposition G.2, the only costly messages are the costly broadcasts in Mrev.

For all m ∈ Mfilt ∪ Mmaj, then, κ(m) = 0. The cost to node n of sending a costly broadcast is

precisely the same as in Proposition G.2,

κ(n : 0 : θ̂) =
∑

y∈y(F (θ̂))

un(y|θ̂n) + tn(F (θ̂)).

which is positive, because the chosen outcome is assumed to be individually rational. The permis-

sible set of messages Mnk that a node may send, and the permissible outcomes Dnk on which a

node may decide, at each information set (H, θ) is exactly the same as in the proof of Proposition

G.2.

The communication protocol specifies that nodes should follow the Filter(⌊N−1
3 ⌋) algorithm (Al-

gorithm F.4), followed by the BT(⌊N−1
3 ⌋) algorithm (Algorithm F.5), and then, once the BT(⌊N−1

3 ⌋)
algorithm terminates, they communicate according to the Revision(T ∗) algorithm (Algorithm F.3).

Once a node has finished the Revision(T ∗) algorithm, if its terminal value is θ̂ ∈
∏

n∈N
Θ̃n (and

θ̂n ∈ Θn for n ∈ S), it decides on outcome x = FS(θ̂). Just as in the proof of Proposition G.2,

we define Umax and κmin. The constant T ∗ specifying the number of phases of communication in

27

Algorithm F.3 is set such that

1−
(

T ∗

1 + T ∗

)N

=
κmin

Umax
.

Full transferability: By construction, the social choice function implements all individually

rational outcomes in each state.

Fault-tolerance: We must show that for any S ⊂ N with |S| > 2
3N , the behaviors specified

by the communication protocol (1) are a fault-tolerant equilibrium, (2) allow non-faulty agents to

come to a consensus on an outcome consistent with their types, and (3) allow non-faulty agents

to come to a consensus on every outcome consistent with their types (with positive probability) as

long as they communicate among themselves.

Point (2) follows from the proof of correctness of Algorithm F.5 (Lemma F.2 and Proposition

F.3). By the final stage of the algorithm, all agents who follow the protocol have already learned

an outcome that is consistent with the types of non-faulty agents. During the revision algorithm,

as long as all nodes behave according to the communication protocol, no node changes its value.

In the final stage, agents must take the action corresponding to the outcome they agreed upon, so

the outcome under this modified algorithm is also consistent with non-faulty agents’ types. Point

(3) follows from Lemma F.2 and Proposition F.3 as well: Lemma F.2 proves that non-faulty nodes

may enter the BT(⌊N−1
3 ⌋) algorithm with any value consistent with their types (with positive

probability), and Proposition F.3 shows that if all non-faulty nodes enter the BT(⌊N−1
3 ⌋) with the

same value, they ultimately agree on that value.

We next must prove that the prescribed behaviors constitute a fault-tolerant equilibrium for

any set S consisting of more than two-thirds of agents. The proof follows along exactly the same

lines as the argument in the proof of Proposition G.2. Any deviation that could be pursued by

a sub-coalition of non-faulty agents S′ ⊂ S, aiming to induce consensus on multiple outcomes,

succeeds with probability at most 1−
(

T ∗

1+T ∗

)N
(by Proposition F.2). The benefit that an agent in

S′ would derive from such a deviation is at most Umax, and the cost of engaging in the deviation is

at least κmin. We chose T ∗ so that(
1−

(T ∗

1 + T ∗
)N)

Umax ≤ κmin,

so it is never profitable for a coalition to engage in a deviation. We can also prove in the exact same

way as in Proposition G.2 that no such coalition S′ would ever engage in a deviation to induce

consensus on a single outcome different from the one that would have occurred if they had behaved

honestly.

H.3 Full transferability proof

Proposition H.3. Under Assumptions 1’ and ??-4, there exists a consensus algorithm (F ,G, C)
that is strongly fault-tolerant and resource-efficient.

28

Proof. This proof will follow along the same lines as the proof of Proposition G.3. The only

difference is that we must show non-faulty nodes can reach agreement when faulty nodes are

permitted to behave in arbitrary ways (rather than simply not communicating).

The consensus algorithm: The collection of social choice functions is precisely the same as

in the proof of Proposition G.3.

The message vocabulary consists of the messages Mfilt used in the Filter(⌊N−1
3 ⌋) algorithm

(Algorithm F.4) and the messages MBT used in the BT(⌊N−1
3 ⌋) algorithm (Algorithm F.5).

The communication protocol dictates that nodes should communicate according to the Filter(⌊N−1
3 ⌋)

algorithm, and when that algorithm terminates, they communicate according to the BT(⌊N−1
3 ⌋)

algorithm. Once they finish the BT(⌊N−1
3 ⌋) algorithm, if they have a value θ̂ ∈ Θ̃ such that θ̂n ̸= θF

for all n ∈ S, they decide on outcome x = F (θ̂).

Resource-efficiency: Resource costs are not used anywhere in the definition of the message

space for the BT(⌊N+1
3 ⌋) communication protocol, so the consensus algorithm is resource-efficient.

Fault-tolerance: We must show that any subset of agents S ⊂ N with |S| > N
2 is a consensus

set. This requires that we show that (1) for any such S, the behaviors specified by the communi-

cation protocol are a fault-tolerant equilibrium, (2) whenever such a set S of nodes communicate

according to the protocol, they come to a consensus on an outcome consistent with their types, and

(3) when nodes in such a set S communicate according to the protocol, they achieve all outcomes

in FS(θS) (for some θS ∈
∏
n∈S

Θn) with positive probability.

Points (2) and (3) follow by exactly the same logic as in the proof of Proposition H.2: relative

to Proposition G.3, the only new requirement is that non-faulty agents be able to reach consensus

no matter how faulty nodes behave, and Proposition H.2 shows that if non-faulty nodes follow the

Filter(⌊N−1
3 ⌋) and BT(⌊N−1

3 ⌋) algorithms, they will do so.

It then remains to show that the behaviors prescribed by the communication protocol are a

strongly fault-tolerant equilibrium. The proof of this point is exactly as in the proof of Proposition

G.3: even if a sub-coalition of non-faulty agents S′ ⊂ S deviates, their payoffs are invariant to the

outcome that is realized, so there is no reason for a deviation to occur.

I Proofs of results in synchronous settings (Section 6.2)

I.1 Proof of Proposition 2

We first prove our benchmark result, Proposition 2.

Proof. The consensus algorithm: Lemma 1 implies that we are given a collection of social choice

functions F that achieve full transferability. Agents use the LSP(⌊N−1
3 ⌋) consensus algorithm

(Algorithm F.6, defined in Section F.4) to implement this collection of social choice functions.

Fault-tolerance: We must show that any set of agents S with |S| > 2
3N is a consensus

set. According to Definition 3’, this requires that (1) behavior according to the communication

29

protocol is a coalition-proof equilibrium in the game GS(σ̃
F) for any set of behaviors of faulty nodes

σ̃F ∈
∏
n̸∈S

Σn, (2) the consensus reached is consistent with non-faulty agents’ initial types, and (3)

all outcomes specified by the social choice function FS are achieved with positive probability (for

all possible behaviors of faulty nodes).

In the proof of correctness of the LSP algorithm (Proposition F.5), we show that each component

θ̂n of the final consensus value θ̂ must be consistent with a message n : θ sent by agent n in the

first round. The communication protocol instructs agents to send messages containing their types,

so the final consensus value must be consistent with agents’ types. Furthermore, if agents in a

consensus set S communicate among themselves, the final consensus value will be equal to FS(θS),

where θS denotes the profile of their types.

Note that under the mediated consensus algorithm (Section B.1) and the LSP algorithm, the

outcome is a deterministic function of nodes’ behavior, since in both cases the algorithm is con-

structed so that there is no randomness in the order in which messages are received. Furthermore,

under both algorithms, no two agents who behave according to the protocol will decide on different

outcomes, so no matter how a coalition deviates, only one outcome can occur. Finally, in both

cases, if a set of agents S are non-faulty, then the outcome must always be an element of XS̃ for

some S̃ ⊃ S.

Suppose that in the game GS(σ̃
F), when the profile of types is θ ∈

∏
n∈N

Θn, the outcome is

x ∈ XS̃ under honest behavior. We show that if there exists a deviation from the LSP protocol

for a coalition S′ under which the outcome is instead x′, then under the mediated consensus

algorithm, there also exists a game GS(σ̃
F,M) and a deviation for S′ that yields outcome x′. Since

the deviation is not profitable for S′ under the mediated consensus algorithm (by Lemma 1), then

it is also unprofitable under the LSP algorithm. In turn, this argument will imply that no coalition

has a profitable deviation from the communication protocol.

Consider a game GS(σ̃
F) in which, when agents in S behave according to the LSP algorithm

and the profile of types is θ, the outcome is x = FS̃(θ̂) (where S̃ = {n : θ̂
′
n ̸= θF }). We show in the

proof of correctness of the LSP algorithm that we must have θ̂n = θn for all n ∈ S. Proposition 1

shows that any deviation for a sub-coalition S′ ⊂ S must yield an outcome x′ in the set

Γ(θ̂|S′) = {θ̂′
: θ̂

′
n = θ̂n ∀ n ̸∈ S}.

Under the mediated consensus algorithm, agents in S′ are free to misreport their initial types

θn, but they cannot influence the type reported by any other agent. Consider a game GS(σ̃
F,M)

in which the outcome would have been x = FS̃(θ̂) under honest behavior (where θ̂ ∈
∏

n∈N
Θ̃n ≡∏

n∈N
(Θn∪{θF })). Then for any θ̂

′
in the set Γ(θ̂|S) there exists a deviation for coalition S′ yielding

outcome x′ = FS̃(θ̂
′
). It is easy to find such a game: set θn = θ̂n for n ∈ S (it does not matter

what the types of faulty agents are), and assume that faulty nodes n follow a behavior in which

they send message θ̂n in the first round of communication.

30

Therefore, the deviations that are possible under the LSP algorithm are precisely the same as

those that are possible under the mediated consensus algorithm. Honest communication according

to the LSP algorithm for all n ∈ S must then be a coalition-proof equilibrium in all games GS(σ̃F).

Resource-efficiency and full transferability: The LSP algorithm (Algorithm F.6) does not

make use of resource costs. We also assumed that the algorithm is used to implement a correlated

action profile F given in Lemma 1, which achieves full transferability.

I.2 Proof of Proposition 3

We next prove the result on scalability: Proposition 3.

Proof. The argument proceeds in three steps.

1. If a consensus algorithm guarantees that all honest nodes reach agreement regardless of what

others do, it must achieve common knowledge of a value θ̂ among all nodes.

2. If k nodes act dishonestly in arbitrary ways, it is generally impossible to guarantee common

knowledge in k rounds of communication.

3. If at most k nodes act dishonestly, then common knowledge is achievable among honest nodes

in k + 1 rounds.

The first step shows that the problem of finding a consensus algorithm guaranteeing agreement

among honest nodes is equivalent to finding a way for them to achieve common knowledge about a

value. The second and third steps show that any such consensus algorithm must achieve agreement

in precisely O(N∆) rounds of communication when there are N agents.

Preliminaries: First note that under the assumption of synchronous communication (Assump-

tion 4’), we may restrict attention to the case in which ∆ = 1, so that all messages are delivered

in exactly one round. If ∆ > 1, the communication protocol can be designed so that nodes send a

message no more than once every ∆ rounds, so that messages from the same (honest) node n are

never received in different orders by others (say n′ and n′′).

Consider the following fictitious communication protocol, which resembles a revelation mecha-

nism.

� In the first round, each node n sends every other node a vote n : θn, which denotes type θn

signed by vote n.

� In each subsequent round k, each node n sends every other node the signed message n : Hn,k−1,

where Hn,k−1 denotes the full history of messages received by n through round k − 1 (where

each message in Hn,k−1 includes its original signature as well).

Of course, a node n should not be permitted to send a message signed by a different node n′, and

when it sends a message n : Hn,k−1, it should be required to provide a proof that every message in

Hn,k−1 was actually received.

31

If nodes follow this protocol, they reveal all of their information to each other in each round.

We can assume without loss of generality that they use this protocol. If nodes used any other

protocol, they would necessarily receive coarser information about what others know regarding the

final consensus value. Note that this is almost exactly the same as the consensus algorithm in

Lamport, Shostak, and Pease (1982), which we describe in Algorithm F.6.

Step 1: A communication protocol C specifies a rule dn(H, θ) mapping a node’s information

to a decision on an outcome. If the consensus algorithm permits all non-faulty nodes to come to

agreement no matter what other nodes do, it must be that

dn(Hnk, θn) = x ∈ X ⇔ dn′(Hn′k, θn′) = x ∀ non-faulty n′.

Let K denote the knowledge operator, so that Kn(I) denotes that n knows event I has occurred.

Then dn(Hnk, θn) = x ⇒ Kn(dn′(Hn′k, θn′)) = x for all non-faulty n′, but then

Kn1(Kn2(Kn3 . . . (Knm(dnm(Hnm,k, θnm)) = x))) . . .)

for all sequences of non-faulty agents. Therefore, when one non-faulty node knows outcome x, then

it is common knowledge among all non-faulty nodes.

Step 2: First, we state what we need to prove more precisely. We want to show that if k nodes

act dishonestly, then there exists a strategy for those nodes such that

� Up until round k, no node is known to be faulty.

� All non-faulty nodes know a profile of types θ̂ up to k-th order,

Kn1(Kn2 , . . . (Knk
(θ̂))) ∀ non-faulty {n1, . . . , nk}.

� In round k + 1, agreement on a profile of types θ̂ can be broken at order k + 1 (along any

arbitrary subset of non-faulty nodes). That is, for some non-faulty nodes n,

Kn(Kn1 , . . . (Knk
(θ̂))) ∀ non-faulty {n1, . . . , nk},

whereas for others this does not hold.

We start with the base case. If a node n acts dishonestly in the first round, it can send different

messages to different agents. Suppose it sends distinct values θn and θ′n to honest nodes. For a node

that receives a profile of types θ̂, the situation is indistinguishable from one in which n actually

acted honestly.

Now assume that the statement holds up to k deviating nodes, and consider the case of k + 1

deviating nodes n1, . . . , nk+1. Consider the following strategy for deviating nodes. Under the induc-

tive assumption, there exists a strategy for nodes n1, . . . , nk such that (1) all nodes n ̸∈ {n1, . . . , nk}
know a profile of types θ̂ up to k-th order, (2) there is a set of messages {mn1,nk+1

, . . . ,mnk,nk+1
}

32

that {n1, . . . , nk} could send to nk+1 so that nk+1 knows θ̂ up to k + 1-th order, and there is a

different set of messages {m′
n1,nk+1

, . . . ,m′
nk,nk+1

} that {n1, . . . , nk} could send to nk+1 so that nk+1

does not know θ̂ at k+1-th order. That is, by sending messages {mn1,nk+1
, . . . ,mnk,nk+1

} in round

k + 1, nk+1 would have a history Hnk+1,k+1 of messages such that Knk+1
(Kj1 , . . . (Kjk(θ̂))) for all

non-faulty j1, . . . , jk, and by sending messages {m′
n1,nk+1

, . . . ,m′
nk,nk+1

}, nk+1 would have a history

H ′
nk+1,k+1 of messages such that ∼ Knk+1

(Kj1 , . . . (Kjk(θ̂))) for all non-faulty j1, . . . , jk.

In round k + 1, nodes n1, . . . , nk send all non-faulty nodes, as well as node nk+1, messages

{mn1,nk+1
, . . . ,mnk,nk+1

}. Hence, all non-faulty nodes know θ̂ up to order k + 1. However, they

also send node nk+1 the messages {m′
n1,nk+1

, . . . ,m′
nk,nk+1

}. they would have sent to get that node

to agree on a at order k + 1 as well as the messages that would result in that node disagreeing

with a at order k + 1. Denote these histories of messages by Hnk+1,k+1 and H ′
nk+1,k+1. Note that

up until round k + 1, node nk+1 has not yet deviated. Furthermore, no node in {n1, . . . , nk} has

communicated inconsistent messages to any non-faulty node, so by the beginning of round k + 2,

no faulty nodes have been identified. Therefore, the first two points hold.

In round k+2, node nk+1 may send some non-faulty nodes the history Hnk+1,k+1 and others the

history H ′
nk+1,k+1. Any node that receives Hnk+1,k+1 will know θ̂ up to order k+2, since all nodes

receiving that message will know that any non-faulty node knows θ̂ up until level k + 1. However,

honest nodes that receive history H ′
nk+1,k+1 will not know θ̂ up to level k + 2. They do not yet

have evidence that nk+1 is faulty, since that node acted honestly up until round k + 1 but sent a

message with a history H ′
nk+1,k+1 indicating that it did not know θ̂ up to level k + 1. This proves

the third point. Therefore, it is impossible for honest nodes to achieve common knowledge on a set

of votes in k + 2 rounds.

Step 3: Now we show that the proposed communication protocol achieves common knowledge

in k + 1 rounds when there are k faulty nodes. Consider any two non-faulty nodes n and n′.

It follows from Proposition F.5 that any two non-faulty nodes will reach agreement on a value

consistent with the types of all non-faulty nodes after k + 1 rounds of communication. Hence, the

value held by a non-faulty node in round k+1 is actually common knowledge among all non-faulty

nodes.

Proof of scalability property: Having proven Steps 1-3, we can now show that, given

any consensus algorithm that permits non-faulty nodes to come to a consensus no matter how

others behave, that algorithm must take |N |∆ rounds of communication. Step 1 establishes that a

consensus algorithm must establish common knowledge about a value θ̂. Step 2 shows that if there

are at most k dishonest nodes, then it is impossible to achieve common knowledge before round

k+1. This implies that when the consensus algorithm is required to tolerate faults by up to ⌊N−1
3 ⌋

nodes (as required by the strong fault-tolerance property), common knowledge cannot be achieved

before round |⌊N−1
3 ⌋|∆. Finally, Step 3 shows that there exists a consensus algorithm that achieves

common knowledge in round |⌈N−1
3 ⌉|∆.

33

References

Aumann, R., and S. Hart (2003): “Long Cheap Talk,” Econometrica, 71(6), 1619–1660.

Bracha, G., and S. Toueg (1985): “Asynchronous Consensus and Broadcast Protocols,” Journal

of the ACM, 32(4), 824–840.

Feldman, P., and S. Micali (1997): “An Optimal Probabilistic Protocol for Synchronous Byzan-

tine Agreement,” SIAM Journal on Computing, 26(4), 873–933.

Lamport, L., D. Shostak, and M. Pease (1980): “Reaching Agreement in the Presence of

Faults,” Journal of the ACM, 27(2), 228–234.

(1982): “The Byzantine Generals Problem,” ACM Transactions on Programming Lan-

guages and Systems, 4(3), 382–401.

Linial, N. (1994): “Game-Theoretic Aspects of Computing,” in Handook of Game Theory with

Economic Applications, ed. by R. Aumann, and S. Hart, pp. 1339–1395. Elsevier.

34

	Discussion of model assumptions
	Assumptions on payoffs and preferences
	Faulty agents and communication frictions
	Equilibrium concept

	Preliminaries
	Consensus algorithms in the Trilemma
	The shutdown fault algorithm
	The revision algorithm
	The Bracha and Toueg (1985) algorithm
	The Lamport, Shostak, and Pease (1982) algorithm

	Proof of the existence result
	Fault-tolerance proof
	Resource-efficiency proof
	Full transferability proof

	Proof of Proposition 1
	Fault-tolerance proof
	Resource-efficiency proof
	Full transferability proof

	Proofs of results in synchronous settings (Section 6.2)
	Proof of Proposition 2
	Proof of Proposition 3

